
Photos placed in 
horizontal position 
with even amount 

of white space
between photos 

and header

Photos placed in horizontal 
position 

with even amount of white 
space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly 
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

ISO/C++17	and	Beyond:
Parallelism	and	Concurrency

(breakout	session)

DOE	COE	Performance	
Portability

August	22-24,	2017
Denver,	CO

SAND2017-8950	PE



1

Agenda

§ DOE	Lab	participation	in	ISO/C++	Standard	Committee
§ Why	we	are	involved	– HPC	performance	portability!
§ Your	lab’s	point-of-contact	
§ How	the	”sausage	is	made”

§ Overview	of	HPC	relevant	C++11	&	17	features

§ Overview	of	potential	(in-the-works)	C++20	features
§ What	in-the-works	features	are	most	important	to	you?
§ What	high-priority	features	not	in-the-works?



2

ISO/C++	Committee	:	Your	Lab’s	Point-of-Contact
§ Each	lab	is	an	independent	corporate	member	of	committee

§ One	primary	representative	exercises	formal	voting	rights
§ Annual	dues,	listed	in	ISO	directory,	participate	regularly

§ Alternate	representative	voting	rights	in	the	absence	of	primary
§ Also	listed	in	ISO	directory	

§ Anyone	from	member	org	can	participate	in	meetings

§ Your	lab’s	primary	representative	(some	alternates?)
§ SNL	– Carter	Edwards
§ LANL	– Stuart	Herring
§ LLNL	– Jim	Reus
§ ANL	– Hal	Finkel
§ LBNL	– Bryce	Lelbach
§ ORNL	– Graham	Lopez

§ FYI:	SNL	hosting	next	ISO/C++	Committee	Working	Meeting
§ Nov	6-11	@	Albuquerque



3

ISO/C++	Committee	:	How	Sausage	is	SlowlyMade

Language Evolution	
Working	Group	(EWG)

Core	Working	Group	(CWG)

Proposal	Paper

Draft	Standard

Library	Evolution
Working	Group	(LEWG)

Library	Working	Group	(LWG)

Concurrency	and	Parallelism
Study	Group	(SG1)

Concurrency	TS

Domain	Expert	Study	Groups

Subject	Technical	Specifications	(TS)

FULL	COMMITTEE	OFFICIAL	VOTING



4

ISO/C++	Committee	:	Roles	&	Responsibilities
§ Proposal	Papers
§ Anyonemay	submit	a	tracked proposals	for
§ Additions	or	modifications	to draft	standard	or	technical	specifications

§ Domain	Expert	Study	Groups
§ Apply	domain	specific	(beyond	language/library)	expertise;	e.g.,
§ Concurrency	&	Parallelism	(SG1),	File	System	(SG3),	Networking	(SG4),	...

§ Library	(LEWG)	and	Language	(EWG)	Evolution
§ Prioritization	among	always-too-many	proposal	papers...
§ Broad	enough	impact	to	be	worth	supporting?
§ Well-specified	scope,	semantics,	interactions,	and	domain-expert	review?

§ Library	(LWG)	and	Language	(CWG)
§ Well-specified	standardese (wording	for	standard)?
§ “Quality	Assurance”	– my	personal	view
§ Typically the	only	groups	to	bring	“straw	poll”	motions	to	the	full	committee

§ Bad	form	and	drama	ensues	attempting	to	bypass	quality	assurance



5

HPC-Relevant	C++11	&	17	Features
§ Parallel	algorithms	(C++17)
§ Allow functors to	be	executed	in	parallel	on	unspecified	resources
§ ...	important	incremental	progress,	C++20	improvements	in	the	works

§ Atomic	Operations	and	Memory	Model	(C++11,	improved	C++17)
§ Efficient	inter-thread	communication	/	synchronization
§ Scalable	concurrently	modified	data	structures

§ Threads,	Mutexes,	and	Conditions	Variables	
§ C++11	pulled	pthreads into	the	standard w/	name	changes	&	reduced	scope

§ Futures,	Promises,	and	Async L
§ ...	infamous,	whispered	about	C++11	“Kona	compromise”
§ ...	avoid	using	these	for	now;	at	least	be	very	cautious



6

Productivity-Relevant	C++11	&	17	Features

§ Lambda	Expressions	– inline	functors
§ C++11:	Introduced,	dramatic	improvement	to	productivity
§ C++17:	Language	flaw	fixed	for	[*this]
§ NVIDIA	CUDA	8:	Offload	lambda	expressions	to	GPU
§ Essential	for	ease-of-use	in	Kokkos,	RAJA,	...	

§ Template	meta-programming	improvements
§ C++11:	Variadic template	arguments
§ C++11:	<type_traits>
§ C++17:	constexpr conditional	statements	JJJJ



7

HPC-Relevant	Potential	C++20	Features
§ Atomic	Operations	Enhancements
§ Floating	point	fetch_add and	atomic	operations	on	non-atomic	types
Ø Building	blocks	enabling	scalable	parallel	scatter-add	algorithms

§ Latches	and	Barriers
§ Atomic-like	thread	synchronization	mechanisms

§ Executors	and	Execution	Context
§ Executor	– specify	how concurrent/parallel	work	is	dispatched	
§ Context	– specify	where concurrent/parallel	work	is	dispatched
§ Fix	futures	and	async

§ Wavefront extensions	to	parallel	algorithms
§ ”Staggered”	or	“pipelined”	parallel	execution	of	loops



8

HPC-Relevant	Potential	C++20	Features
§ Coroutines (TS)
§ Functions	designed	to	be	called	iteratively/concurrently
§ Well-defined	suspension/resumption

§ SIMD	Types	– Portable	Vector	Intrinsics
§ Guarantee arithmetic	operations	map	to	intrinsics for	vector	hardware
§ Address	vector	width,	intra-lane	operations,	conditional	control	flow,	...

§ Multidimensional	Arrays	(finally!)	with Polymorphic	Layout
§ Motivated	by	Kokkos	multidimensional	arrays
§ Array	type	includes	row	major,	column	major,	...	layout	specification

§ Modules	(TS)	– improve	compilation	performance
§ Concepts	“light”	– improve	template	meta-programming
§ Many,	many	years	in	the	making,	with	some	reputations	on	the	line...
§ ...	question	has	been	raised	if,	given	C++17	features,	this	is	still	useful	😲



9

Open	Dialogue	/	Deep	Dive	as	Requested

§ C++11	spec,	C++17	draft,	proposal	papers	
§ cppreference.com for	C++11,	C++14,	C++17,	and	TS	toward	C++20
§ also	have	some	in-hand

§ Priorities	for	potential	features	mentioned?
§ May	need	to	be	championed	by	you/your	DOE	Lab	reps

§ Important	needed	features	not	mentioned?
§ May	have	failed	to	mention
§ May	need	to	be	added	and	championed	by	you/your	DOE	Lab	reps

§ Deeper	look	at	existing	/	proposed	features?
§ Sufficient	number	present	want	to	deep-dive?		do	it	now
§ Otherwise	an	off-line	small	group	activity


